On coupled multiparameter nonlinear elliptic systems
نویسندگان
چکیده
منابع مشابه
Spectral asymptotics and bifurcation for nonlinear multiparameter elliptic eigenvalue problems
This paper is concerned with the nonlinear multiparameter elliptic eigenvalue problem u′′(r) + N − 1 r u′(r) + μu(r)− k ∑ i=1 λifi(u(r)) = 0, 0 < r < 1, u(r) > 0, 0 ≤ r < 1, u′(0) = 0, u(1) = 0, where N ≥ 1, k ∈ N and μ, λi ≥ 0 (1 ≤ i ≤ k) are parameters. The aim of this paper is to study the asymptotic properties of eigencurve μ(λ, α) = μ(λ1, λ2, · · · , λk, α) with emphasis on the phenomenon ...
متن کاملSome local fixed point results under $C$-class functions with applications to coupled elliptic systems
The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...
متن کاملWeakly Coupled Elliptic Systems and Positivity
In this paper we will study under which conditions the positive cone, or part of the positive cone, is preserved when solving a weakly coupled system of elliptic partial differential equations. Such a system will be as follows: −∆1 0 0 . . . 0 0 −∆k u1 .. uk = c11 · · · c1k .. .. ck1 · · · ckk u1 .. uk + f1 .. fk on a bounded domain in IR, with zero Dirichlet bounda...
متن کاملLorentz Spaces and Nonlinear Elliptic Systems
In this paper we study the following system of semilinear elliptic equations: −∆u = g(v) , in Ω, −∆v = f(u) , in Ω, u = 0 and v = 0 , on ∂Ω, where Ω is a bounded domain in R , and f, g ∈ C(R) are superlinear nonlinearities. The natural framework for such systems are Sobolev spaces, which give in most cases an adequate answer concerning the ”maximal growth” on f and g such that the proble...
متن کاملNonlinear Elliptic Systems and Mean Field Games ∗
We consider a class of quasilinear elliptic systems of PDEs consisting of N HamiltonJacobi-Bellman equations coupled with N divergence form equations, generalising to N > 1 populations the PDEs for stationary Mean-Field Games first proposed by Lasry and Lions. We provide a wide range of sufficient conditions for the existence of solutions to these systems: either the Hamiltonians are required t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1986
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1986-0819947-4